1 4 Se p 20 05 EXCELLENT ABSTRACT ELEMENTARY CLASSES ARE TAME
نویسنده
چکیده
The assumption that an AEC is tame is a powerful assumption permitting development of stability theory for AECs with the amalgamation property. Lately several upward categoricity theorems were discovered where tameness replaces strong set-theoretic assumptions. We present in this article two sufficient conditions for tameness, both in form of strong amalgamation properties that occur in nature. One of them was used recently to prove that several Hrushovski classes are tame. This is done by introducing the property of weak (μ, n)-uniqueness which makes sense for all AECs (unlike Shelah’s original property) and derive it from the assumption that weak (LS(K), n)-uniqueness, (LS(K), n)symmetry and (LS(K), n)-existence properties hold for all n < ω. The conjunction of these three properties we call excellence, unlike [Sh 87b] we do not require the very strong (LS(K), n)-uniqueness, nor we assume that the members of K are atomic models of a countable first order theory. We also work in a more general context than Shelah’s good frames.
منابع مشابه
Shelah's categoricity conjecture from a successor for tame abstract elementary classes
We prove a categoricity transfer theorem for tame abstract elementary classes. Theorem 0.1. Suppose that K is a χ-tame abstract elementary class and satisfies the amalgamation and joint embedding properties and has arbitrarily large models. Let λ ≥ Max{χ,LS(K)}. If K is categorical in λ and λ, then K is categorical in λ. Combining this theorem with some results from [Sh 394], we derive a form o...
متن کاملEquivalent Definitions of superstability in Tame Abstract Elementary Classes
ELEMENTARY CLASSES RAMI GROSSBERG AND SEBASTIEN VASEY Abstract. In the context of abstract elementary classes (AECs) with a monster model, several possible definitions of superstability have appeared in the literature. Among them are no long splitting chains, uniqueness of limit models, and solvability. Under the assumption that the class is tame and stable, we show that (asymptotically) no lon...
متن کاملGalois-stability for Tame Abstract Elementary Classes
We introduce tame abstract elementary classes as a generalization of all cases of abstract elementary classes that are known to permit development of stability-like theory. In this paper we explore stability results in this new context. We assume that K is a tame abstract elementary class satisfying the amalgamation property with no maximal model. The main results include: Theorem 0.1. Suppose ...
متن کاملCategoricity and Stability in Abstract Elementary Classes
Categoricity and Stability in Abstract Elementary Classes byMonica M. VanDieren This thesis tackles the classification theory of non-elementary classes from twoperspectives. In Chapter II we work towards a categoricity transfer theorem, whileChapter III focuses on the development of a stability theory for abstract elementaryclasses (AECs).The results in Chapter II are in a c...
متن کاملSuperstability in abstract elementary classes
We prove that several definitions of superstability in abstract elementary classes (AECs) are equivalent under the assumption that the class is stable, tame, has amalgamation, joint embedding, and arbitrarily large models. This partially answers questions of Shelah. Theorem 0.1. Let K be a tame AEC with amalgamation, joint embedding, and arbitrarily large models. Assume K is stable. Then the fo...
متن کامل